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1. INTRODUCTION 

In jet engines and nuclear reactors some of the critical com- 

ponents are invariably subject to fatigue at elevated temperature in 

hostile environments. To account for those critical design require- 

ments and to achieve maximum utilization of those components without 

compromise in safety or reliability, it is necessary to be able to 

predict the life of the system. So far a major difficulty in life 

prediction lies in the uncertainty associated with the effects of 

creep and environmental attack at high temperature. The relative 

importance of these effects and how to incorporate them into a life- 

prediction scheme are still not well understood at the present time. 

A number of models has been proposed to date for predicting 

fatigue life at elevated temperature. To name a few well-known ones, 
. 

we have strain-range partitioning model (SRP),' frequency separation 

model (=I ,' Ostergren model 3 and damage rate model 

(OR).4 Traditionally, these models have been formulated based on 

intuitive hypothesis of what constitutes damage. The fatigue life is 

then experimentally determined in terms of chosen parameters. 

Mechanisms of damage accumulation dealing with high temperature low 

cycle fatigue (LCF) have also been discussed from a metallurgical 

point of view. 596 It is recognized that numerous damage mechanisms can 

occur as a result of a number of factors like plastic deformation, 

creep deformation, creep/plastic interaction, environmental effects, 

development of new phases and interactions amongst the above 

factors.6 Because of the complexity of the damage accumulation pro- 
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cess, which, realistically is a function of material, loading con- 

ditions, temperature and environment, it may be incorrect to use any 

particular mode listed above to describe it. The existing life pre- 

diction models, have been applied to several materials with promising 

results. However, the applicability and limitations of these models 

need to be evaluated for materals used in aerospace industries. 

The main purpose of this study is to determine the mechanism 

controlling deformation and failure under cyclic conditions of two 

materials for aerospace applications. The first one, nickel-base 

superalloy Rene'g5, is used in the manufacture of turbine disks. The 

second one, copper-base alloy N!ARloy Z, is a candidate material for 

rocket nozzle liners in engines of space shuttle, orbit-to-orbit 

shuttle and space tug etc. These two materials have quite different 

microstructures and mechanical properties. Presumably they also will 

have different damage accumulation mechanisms and their lives will be 

described by different fatigue models. 
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2. REVIEW OF LITERATURE 

The problem of fatigue at elevated temperature is basically one 

of cumulative damage. This involves some fatigue mechanisms governed 

by cyclic strain in conjunction with some creep mechanisms and/or cer- 

tain mechanisms involving only environmental effects. In some cases, 

metallurgical changes (morphological changes in existing phases, deve- 

lopment of new phases etc.) are also treated as sources of damage that 

may interact with the above mechanisms and degrade the fatigue life. 

The effect of creep and environment generally becomes increasingly 

important with increases in temperature and/or decreases in strain 

rate (frequency) and also when hold time is introduced to each cycle. 

Eventually fatigue at high temperature is, in fact, a time dependent 

process that is a function of the material, strain (stress) range, 

cycle type and environment. 

2.1 Damage Mechanisms of High Temperature Fatigue: 

Frequently, the fatigue process is discussed in terms of 

crack initiation and propagation stages. At high temperature, the 

nature of these two stages is completely dependent on the damage 

mechanisms cited above and consists of the overall microscopic aspect of 

fatigue fracture phenomenon. It is, therefore, appropriate to con- 

sider briefly the two main stages of crack initiation and propagation. 

2.1.1 T-ransgranular Crack Initiation and Propagation: 

The transgranular crack initiation stage can be correlated 

quite well with the deformation character of the material.7 In the 
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case of planar slip, dislocations are confined to glide in individual 

slip planes giving rise to heterogeneous deformation such that dislo- 

cations pile up against barriers like grain boundaries, incoherent 

precipitate particles etc. This causes strain localization in the 

slip bands and cracking along slip planes eventually takes place. 

This type of deformation is favored under conditions of low stacking 

fault energy (SFE), low temperature, low strain and the presence of 

coherent precipitates. Fracture along 45" plane to the stress axis 

and a slight change in the direction of crystallographic fracture 

facets with orientation are typical of this type of cracking. This is 

generally referred to as stage I cracking. For planar slip materials, 

the degree of slip homogeneity is important in determining the rate of 

slip band crack initiation and propagation. 

For wavy slip, the dispersal of slip to adjacent slip planes 

by means of dislocation cross slip and climb leads to homogeneous 

deformation. This results in transgranular cracking that is macrosco- 

pically perpendicular to the stress axis. It is referred to as stage 

II cracking. This type of deformation is favored by conditions like 

high SFE, high strain, incoherent precipitates and most importantly, 

temperature greater than 0.3 - 0.5 T, where T, is the absolute melting 

point. The influence of temperature is very important because thermal 

activation assists slip dispersal. In many high temperature alloys 

crack initiation is governed by second phase particles or defects. 

Similarly, twin boundaries affect crack initiation in wrought 

materials. The crack can initiate at inclusions 8,9 or 
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carbides, l",ll at micropores, 9,ll between carbide/matrix 

interfacel* or along coherent annealing twins. 13,26 

Generally transgranular crack propagation is favored at low 

temperatures. Low mean stress and high frequency render it favorable 

at elevated temperature. It can be either stage I or II mode 

depending on the nature of deformation at the crack tip. The mecha- 

nisms of both modes involve crack growth by localized deformations 

essentially from a plastic blunting process 
14 or by the accumulation 

of damage at the crack tip - a micro LCF process. l5 The striations 

observed in stage II of ductile materials such as stainless steels and 

OFHC copper at elevated temperature are developed first by the plastic 

blunting of the cracktip during the tension part of the fatigue cycle 

followed by resharpening of the crack in the compression part. But in 

materials with low ductility such as nickel-base superalloys, marked 

striations are not seen very often. l3 A crack initiated in stage I 

will change to stage II when it gets to a certain length and encoun- 

ters a grain boundary. This length is a function of strain and fre- 

quency. 

2.1.2 Intergranular Crack Initiation and Propagation: 

For most materials, intergranular cracks can be developed 

during fatigue under conditions of lower strain rate and temperatures 

above 0.5 T,. This phenomenon is mostly due to the effect of creep. 

The creep effect is visualized as either a process of nucleation and 

growth of cavities or triple point cracking. Both these processes 

have been discussed in great detail for the case of creep under static 
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loading. Only recently, Veevers and Snowdown16 have reviewed the role 

of these processes in fatigue. 

It is generally believed that grain boundary sliding (which 

was experimentally shown to be controlled by intragranular 

deformation17'18) is responsible for intergranular cracking. For 

single phase alloys cavitation is observed to be associated with grain 

boundary sliding. This grain boundary sliding is enhanced when the 

boundaries tend to align themselves at 45" to the stress axis through 

migration during cycling. The cavity density exhibits a maximum when 

the boundaries are so aligned. 19 Once the cavities are initiated, 

they are still thermodynamically unstable unless they attain a criti- 

cal size. There is sufficient experimental evidence to prove that 

vacancies produced by cyclic plastic deformation can stabilize the 

cavities. 20,21 

The maximum cavity population on the boundaries aligned at 

45' to the stress axis was also seen in systems where grain boundary 

sliding is restricted by particles at the boundaries. 20,Zl 

Raj** proposed that this is due to stress concentration at grain boun- 

dary precipitates. Intergranular cracks are often initiated at the 

interface between grain boundary particles and the matrix. 23324 The 

exact mechanism is still not understood at the present time. Wells. et 

al.7 believe that impediment of grain boundary sliding is attained 

when the particle-matrix interface is more strongly bonded than the 

misoriented matrix and the particles are equiaxial and are relatively 

wide spaced. Experimental results suggest that there is an optimum 
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size and volume fraction of grain boundary precipitates which will 

resist grain boundary sliding and cavitation. 25,26 It has been 

observed that blockage of slip bands and twin boundary shear can 

assist intergranular crack initiation through particle-matrix inter- 

facial separation 27 or grain boundary ledge formation. 28,29 This 

mechanism, in addition to stage I cracking cited in transgranular ini- 

tiation, becomes most important when slip is planar and heterogeneous. 

Triple point cracks are described by the Stroh mode13' as 

those occurring by the build-up of stress intensity at a triple point 

before the deformation within grains or along the boundaries can pro- 

vide sufficient relief. Because it requires large shear offsets at 

the triple point, this type of cracking should be enhanced by large 

strain ranges and cycles containing a creep hold. 

Tensile hold time studies on austenitic stainless steels 

revealed significant differences in fracture morphology and in life as 

compared to combined tensile and compressive holds. 31-33 Fractures in 

the former case were largely intergranular. Addition of even short 

compression hold times causes essentially transgranular fracture and 

increases life. It is believed that tensile half cycle produces both 

cavities and triple point cracks. Further, it also accelerates their 

growth. The compressive half cycle, on the other hand, not only 

retards their growth but also tends to heal them by reversed grain 

boundary sliding. Similarly, a degradation in life and change in 

fracture morphology were seen in unsymmetrical strain rate cycling 

slow-fast tests, 34 as compared to syrrrnetrical strain rate cycling. A 
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mechanism involving fracture of grain boundaries by triple junction 

cracking in the crack tip region was proposed by Min and Raj. 35 They 

derived a critical tensile going strain rate (where the boundaries can 

slide just fast enough to keep up with the rate of deformation) below 

which grain boundary sliding (intergranular damage) occurs. 

2.1.3 Effect of Environment: 

It has been recognized for some time that the environment 

can seriously affect fatigue properties especially at elevated tem- 

perature. Coffin36 investigated this for AISI 304 by testing at high 

temperature in vacuum and at room temperature in air and compared his 

results with the observations of Berling et al. 37 at high temperature 

in air. It was noted that room temperature behavior could be produced 

by testing at high temperature in vacuum. According to Coffin36 since 

in vacuum the effect of environment can be isolated readily, the life 

degradation in air was found to be mostly due to environmental effect. 

However, care should be taken when interpreting the results of tests 

done in vacuum. Though environmental effects are absent, thermal 

etching of grain boundaries due to the presence of elements with a 

high vapor pressure can cause early intergranular cracking. Coffin" 

also studied LCF of A286 over the frequency range 5 to 0.1 cpm . He 

noted a pronounced frequency dependence and intergranular cracking 

when the tests were run in air. In contrast, tests run in vacuum 

exhibited transgranular cracking and did not show such a frequency 

effect. This led to the conclusion that in this frequency range, 

environmental effects were responsible for the frequency dependence as 
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well as enhancement of intergranular fracture. 

McMahon and Coffin3' examined the fatigue results for cast 

Udimet 500 tested in air and found that localized oxidation is impor- 

tant to the failure process. Life degradation was more a result of 

"oxidation" fatigue (analogous to corrosion fatigue) than due to creep 

damage processes. Because chemical segregation and more open struc- 

ture render them more susceptible to oxidation, grain boundaries are 

preferentially attacked by the environment." Pre-oxidizing Udimet 

700 specimens at 982'C followed by fatigue testing at 760°C produced 

many surface integranular cracks, whereas testing without prior oxida- 

ton produced a single intergranular crack. 41 Thus pre-oxidized or 

preferentially oxidized grain boundaries serve as incipient cracks. 

Oxidation can sometimes be beneficial to fatigue also. It 

may retard crack growth by increasing the cracktip radius and reducing 

the amount of crack resharpening in compression 42,43 This role of 

oxide in crack blunting was also reported in creep to explain the 

longer stress rupture lives in air than in vacuum. 44 Exact mechanisms 

associated with environmental effects are still not well understood at 

the present time. 

2.2 Fatigue Behavior of Nickel Base Superalloys: 

Nickel-base superalloys have low SFE: fee matrix(y ) that are 

strengthened through solid solution, second phases (y ',y ",oxides) 

and various metallic carbides. 45 As a consequence, they possess 
excellent resistance to fatigue and creep. In addition, these 

superalloys have good corrosion and oxidation resistance. These pro- 
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perties are essential to high temperature applications in jet engines. 

Fatigue behavior of nickel-base superalloys has been exten- 

sively studied at both ambient and high temperatures. In these alloys 

at low temperatures and high frequencies, slip is planar. Depending 

on its size, Y' is either sheared or looped by dislocations. 46 As a 

result, stage I cracking along slip band is the predominant initiation 

mode. This has been observed in Udimet 700 by Wells et a1.,47 by 

MerrickZ6 in Waspaloy, Inconel 718 and Inconel 901, in Astroloy by 

Runkle, 25 in Udimet 710 by Moon et al., 48 and by Leverant et al. 4g in 

Mar-M200 single crystal. Stage I initiation was also found at defect 

sites by Gel1 et al.42 in Mar-M200 and by Menon et al. 5o in Rene' 95. 

Duquette et al.,51 found that air environment had a profound 

influence on stage I cracking in Mar-M200 single crystal at room tem- 

perature. They explained its shorter fatigue life in air in terms of 

the reduction in surface energy at the stage I crack tip due to oxygen 

adsorption. 

Studies on Rene' 9552 and Waspaloy53 by Antolovich et al. on 

Astroloy by Merrick et a1.54 and on IN 718 by Mills et a1.55 showed 

that their fatigue crack propagation (FCP) behavior is improved by a 

microstructure that promotes slip planarity. In transgranular mode, 

an increased slip planarity accelerates stage I cracking, but tends to 

lower the fatigue propagation rate (FCPR) when oxidation effect is 

only minor. In the temperature range of 550" to 65O"C, however, 

Clavel et a1.56 observed greater frequency dependence of FCPR in 

Inconel 718 than in Waspaloy due to the occurrence of intergranular 
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cracking. The deformation in Waspaloy was rather homogeneous 

while in Inconel 718 it was very heterogeneous and planar. This led 

them to conclude that the occurrence of intergranular fracture at high 

temperature in these two alloys is favored by heterogeneous defor- 

mation (planar slip). This fact can be explained by the grain boun- 

dary cracking due to the blockage of slip bands, as later observed by 

Lerch57 in Waspaloy. 

A transition from-stage I to stage II cracking in fracture 

path is often observed in nickel-base superalloys13y25S26 without a 

change in slip character. Pelloux et a1.25 think that the transition 

is governed in part by the ratio of reversed cyclic plastic zone size 

R,p at the crack tip to the grain size d. They suggested that for 

small Rep/d, the crack tip opening is accommodated by Mode II 

displacement along stage i cracks. As Rep becomes larger than d, 

plastic deformation at the crack tip becomes more typical of 

continuous plasticity and stage II cracking begins. A 

change to stage II cracking was also observed by Leverant and 

Ge114' in idar-M200 at elevated temperature. They however relate that 

to a change in deformation such as slip becoming wavy. 

At a temperature greater than 0.5 Tm, (the actual tem- 

perature depends on strain rate or frequency), cracking during fatigue 

frequently becomes intergranular. Wells et al. 47,58 showed that in 

Udimet 700 the surface cracking is intergranular at 760' and 926OC as 

opposed to stage I at room temperature. Also they noted that at ele- 

vated temperatures void initiation and coalescence were the rate 
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controlling mechanisms. Fatigue studies on Udimet 500 and Rene' 80 by 

Coffin et a1.3gs5g revealed that intergranular oxidation is the pri- 

mary mechanism of crack initiation at 871OC. While the cracking 

remained intergranular in Udimet 500, the fracture path changed to 

stage II after one grain diameter in Rene' 80. Antolovich et 

al 6o . also studied Rene' 80 with prior exposure under stress and found 

a large reduction in fatigue life. They concluded that the most 

severe form of damage was associated with environmental interactions 

in the boundaries. 

The effect of air environment on the high temperature FCP 

for nickel-base superalloys has also been reported in the 

literature. 61 In general, its effect on the FCP is to increase the 

crack growth rate. The environment can, sometimes, promote intergra- 

nular cracking, particularly when there is a decrease in frequency. 

Hold time and frequency are found to have a significant 

effect on fatigue behavior of nickel-base superalloys. 

2.2.1 Effect of Hold Time: 

In austenitic stainless steel most damage was observed with 

tensile hold.31S33 From a study of Udimet 700 at 760°C with 

interspersed dwell times, Wells et al. 27 
noted that compressive dwells 

were more harmful than tensile ones. The reason for this was 

speculated to be the flatter shape of grain boundary voids and a 

greater crack tip stress intensity when compressive holds were pre- 

sent. Hold time studies by Coffin62 in LCF of Rene' 80 at 760°C 

showed that compressive hold is more damaging than tensile hold. He 
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argued that a tensile hold accompanied by compressive mean stress is 

beneficial to fatigue resistance and that compressive told with ten- 

sile mean stress acts to reduce the fatigue life. A similar obser- 

vation was also made by Feranish and McEvily63 with 2.25 Cr-1 MO 

steel. They related the observed behavior to combined interactions of 

oxide formation, spalling and surface deformation. In compression 

following a tension hold the oxides spa11 to produce a new surface 

free of macroscopic cracks while in tension following a compression 

hold the oxides crack instead, creating localized stress con- 

centrations that facilitate crack nucleation. 

Sadananda and Shahinian 6446 studied FCP in Inconel 718 and 

Udimet 700 and concluded that hold time effects depend on two factors; 

environmental effects in relation to creep effects, and applied stress 

intensity at the hold period in relation to threshold stress intensity 

for creep crack growth Kthc. If the applied stress intensity during a 

hold time is greater than Kthc, then hold time increases crack growth 

rates due to both environmental and creep effects. If the stress 

intensity is less than Kthc, environmental effects could still acce- 

lerate crack growth if the creep deformation rate is sufficiently low. 

But if the rate is high enough then crack tip blunting occurs which 

arrests crack growth in spite of the environmental and cyclic effects. 

2.2.2 Effect of Frequency: 

Organ and Sell 43 observed that fatigue life in Udimet 700 

tested at 760°C increased first as frequency increased from 2 to 600 

cpm but decreased at 6 x lo4 cpm. They suggested that there were two 
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competing effects with increase in frequency. The increase in life at 

first was because of the greater tendency to eliminate the effects of 

creep and oxidation, thereby changing crack initiation from intergra- 

nular to stage I. The reduction in life later was on account of pre- 

dominant effect of increasing slip planarity which, in fact, 

accelerated stage I cracking. In the case of Rene' 80, Antolovich et 

al 67 . observed that at 871°C and 982°C with the damage controlled by 

environmental effects, life increased with decreasing strain rate from 

50 to 0.5 percent min-'. This was attributed to 'coarsening which 

was beneficial in as much as it increased the ductility. 

2.3 Damage Mechanisms in Rene' 95: 

Rene' 95 is a high-strength wrought nickel-base superalloy, 

developed by General Electric co.68 It has high potential for appli- 

cation in the manufacture of compressor and turbine disks in advanced 

aircraft engines. Like other nickel-base superalloys, Rene' 95 is 

strengthened by Y ' precipitation [Ni3(A1,Ti,Cb)] and solid solution 

lattice strain from the addition of MO, W, Co and Cr to Y ' matrix. 

The carbides, act to prevent grain boundary sliding (creep damage) is 

in the form of MC [(Ti,Cb,W)C]. The total weight percentage of Y ' 

forming elements (Al, Ti and Cb) is 9.5 - the number from which the 

alloy derives its name. 

A special thermomechanical processing, 69 
involving warm 

working the alloy in the two phase Y - Y' region at a temperature 

below that of rapid recrystallization, imparts in Rene' 95 a duplex 

microstructure, that consists of large warm-worked grains surrounded 
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by a fine grained recrystallized "necklace". Shamblen et a1.7o found 

that in the range 538°C to 650°C, Rene' 95 with duplex microstructure 

possesses mechanical properties superior to those of the same alloy 

processed in the conventional way, having one hundred percent fine 

grain structure. They ascribed this to greater crack propagation 

resistance in air of the duplex structure by virtue of its large warm 

worked grains. 

Previous studies on tensile and fatigue deformation behavior 

by Menon and Reimann 71,50 showed a more homogeneous deformation mode - 

for necklace Rene' 95, as compared to the coarse planar mode occurring 

in conventional superalioys. They believe that dislocation substruc- 

ture in the warm-worked grains is very effective in dispersing slip 

throughout the grain, thus forcing the material to deform homoge- 

neously. They further suggest that the presence of necklace grains is 

also responsible for such homogeneous nature of deformation. 

Microtwinning 72 has also been observed as a mode of deformation 

during tension and fatigue. The same authors suggested that it is 

associated with the residual dislocation substructure in the warm- 

worked grains. 

In their LCF and creep study, Menon and Reimann 50'73 found 

that the presence of MC carbides affects crack initiation of Cast + 

Forged Rene' 95. At ambient temperatures crack initiation associated 

with cracking or decohesion of MC carbides appeared to make fatigue 

life shorter than that due to only slip band cracking. At 650°C the 

presence of NC carbides that had undergone partial decohesion from the 
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fracture surface was seen near the stage I area. Typically the frac- 

ture surface consisted of both stage I and stage II regions. Creep 

results at 650°C in air showed higher minimum creep rates, shorter 

steady state creep periods and lower rupture lives as compared to 

those in vacuum. It was shown that air tested specimens with MC car- 

bides on the surface were prone to surface cracking. Cracks generally 

initiated and propagated intergranularly along the necklace region. 

In contrast, specimens tested at 650°C in vacuum were not prone to 

surface carbide cracking any more than when the carbides were inside 

the specimen. The authors did not see any evidence of the propagation 

of a single crack. Instead, they observed a mixture of intergranular 

cracks and dimple rupture. These results demonstrate the strong 

environmental effect on creep crack initiation in Rene' 95. Bashir et 

al. 9 studied LCF of HIP + Forged PM Rene' 95 in air and found that a 

great enhancement in life was associated with subsurface initiation. 

This led them to conclude that there is a very significant environmen- 

tal effect on the LCF of Rene' 95 at 65OOC. They indicated that the 

fatigue life based on plastic strain was at least as great with ten- 

sion hold time as for continuous cycling, and crack propagation tends 

to occur by a boundary mechanism at least initially. As for con- 

tinuous cycling, cracking always changed from transgranular to 

intergranular. The transition was described in terms of a critical 

combination of crack length and strain. 

2.4 Damage Mechanisms in NARloy Z and Pure Copper: 

NARl oy Z is an alloy of copper with slight addition of 
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silver and zirconium. This alloy was specially developed by Rockwell 

North America Inc. 74 to meet the requirements of high thermal conduc- 

tivity and fatigue resistance for rocket nozzle liners. By the addi- 

tion of Zr to Cu-Ag alloy, uniform continuous precipitation, refined 

grain size and improved ductility are attained. NARloy Z being a 

proprietary material, there is no published report in the literature 

of its fatigue behavior. However, literature on fatigue charac- 

teristics of pure copper at elevated temperature is available. 

Wigmore and .Smith75 studied LCF behavior of oxygen-free. 

high conductivity (OFHC) copper between 400° and 6OOOC. They noted 

the occurrence of grain boundary sliding and grain boundary migration 

that produced preferential orientation of boundaries at 45' to the 

stress axis. Cracking was found at triple points 'as a result of 

stress concentration induced by grain boundary sliding. The cracks 

increased in length with further fatigue and eventually link together 

by ductile rupture causing final failure. Similar observations were 

reported by Abdel-Raouf et al. 76 in OFHC copper at 650°C. They did 

not see any migration at 3OOOC. Testing vacuum-cast copper (which has 

a slightly higher purity level than OFHC copper) under the same 

conditions, Wigmore and Smith 75 observed no triple point cracking. 

Final failure was from what the authors identified as plastic instabi- 

lity ,effect. Sidey and Coffin77 tested OFHC copper at 400°C at une- 

qual strain rates to study the effects of wave shape. The fatigue 

lifetime decreased by an order of magni.tude as the tensile going 

strain rate was reduced from 1.7 x 10s3 s-l to 1.7 x 10B5 s-l at 
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constant cyclic period. Accompanying this reduction in lifetime was 

a change in fracture mode from transgranular in the case of fast-slow 

tests to intergranular (internal cavitation) for slow-fast tests. 

2.5 Fatigue Life Prediction Models: 

Criteria for life prediction is generally established in two 

ways: (a) by consideration of cyclic and time-dependent effects as 

separate phenomena, and combining the damage function by assuming a 

linear damage accumulation rule, for each determined separately as in 

the SRP model; or (b) by consideration of the cyclic and time effects 

as a single process expressed in terms of several variables, including 

the strain rate or frequency of the cycle as in FS, Ostergren and DR 

models. Each of these models is discussed in the following sections. 

2.5.1 Strain-Range Partitionins Model: 

The strain-range partitioning (SRP) concept1978 is an exten- 

sion of the Coffin-Manson law (which is valid at room temperature) to 

high temperature by including the interaction of time-dependent ine- 

lastic strains (creep) and time-independent inelastic strains 

(plasticity). The inelastic strain range consists of four components, 

* EPP, * EpC, * Ecp, * Ecc* From these, four inelastic strain-life 

relationships are constructed. Then the interactive law in the 

following form is invoked; 

F F 
PP + 

F 
pc + Fcp + cc = 

1 
-_ - - 

NF 
NPP PC cP %c N 

(1) 
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where F.. 
13 = fraction of the ij inelastic strain component 

N ij = life calculated from the pre-determined strain-life 

relation of ij assuming all of the inelastic strain 

to be of the component of interest. 

N = predicted overall life. 

It should be noted that except for the AC 
PP 

vs Npp curve 

all other relationships are computed assuming that eq. (1) is valid. 

Clearly this introduces an element of redundancy into the scheme. 

The applicability of the SRP model was demonstrated with the 

following systems: AISI 316 at 705OC, 2.25 Cr-1Mo steel, A286 and 

H-13 steel at 595OC, Incoloy 100 at 925OC, T-111 at 115OOC. 

2.5.2 Frequency Separation Model: 

Modifying the Coffin-Manson law by introducing a frequency 

term to account for a creep effect, Coffin 34 proposed an expression, 

*“p (b v 
k-l)o = c 

(2) 

This modification though it incorporates time dependence factor, is ina- 

dequate to account for the behavior of unbalanced loop. This is 

resolved in the frequency separation (FS) nodel,2 by application of 

the elastic strain and life relationship. 

*Ee = ha = A Acpn v kl = A’Nf+’ v kl 

E 

and determination of the stress range of unbalanced loops by 

(3) 
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A vc kl 

%F = &,Fs =p [(-I-, 
Vt kl 

+Q I&p” 

The cyclic life is then determined from 

kl'h' 

Nf= (- 
A' )1/e' 

a-) 
*'SF 2 

where AosF = stress range of a slow-fast loop 

(4) 

(5) 

Q/2 = tension-going frequency 

8' =nS 

kl' = kl - (k-1$ 

A more general form which incorporates plastic range, tension going 

frequency and the loop time balance as important variables, is given 

by 

Nf 
= DAEpa V b 

vc c 
t (,I (6) t 

It should be noted that the stress range in eq. (4) is 

0 really a fictitious term which, is, in reality, determined from tw 

experiments. 

Examples of systems with successful application of FS mode 

are AISI 304 at 593OC; and AISI 316 at both 566°C and 704°C. 

1 

2.5.3 Ostergren Model: 

Ostergren 3,79 considered LCF to be essentially a problem of 

crack propagation and assumed that only the deformation which occurs 

when the crack is open contributes to crack propagation and thus to 
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fatigue damage. A damage function aTAsp, proportional to the net ten- 

sile hysteretic energy, was then introduced as a measure of damage. 

This results in an equation 

6TkpNfB = c 

similar to Coffin-Manson law. In order to account for hold time and 

frequency effects on life, time-dependent damage equation was deve- 

loped, similar to Coffin's frequency modified equation: 

(7) 

For time-dependent, wave shape independent condition, the frequency is 

the inverse of the cycle period L, = l/(~~ + Tt + .rc), whereas in the 

case of time-dependent, wave shape dependent situation, v = l/(~, + 

Tt - 'c) and v= 1/'o for rt 5 Tc. In terms of mechanisms, in the 

former case, it hypothesizes that time dependent damage results 

primarily from environmental reacitons (oxidation), while in the 

latter case, it accounts for the greater time-dependent damaging 

effect of unreversed tensile creep deformations. 

Systems to which Ostergren model is applicable are IN 738 

and Rene' 80 at 871°C (time-independent); Cr-MO-Y at 538°C 

(time-dependent, wave shape independent) and AISI 304 at 538OC 

(time-dependent, wave shape dependent). 

2.5.4 Damaqe Rate Model: 

The damage rate mode14'80 assumes that LCF is primarily a 

process of propagation of pre-existing microcracks and the crack 
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growth rate da/dt is governed by the strain and strain rate as 

follows: 

da = - 
(under tensile stress) 

dt 
acl Ep 1 

m , lp , k (under compressive stress) (9) 

(8) 

T, C, m and k above are material parameters that are functions of tem- 

perature strain rate, environment and the metallurgical state of the 

material. Usually the transition in these parameters is associated 

with transitions in the fracture morphology, e.g. from a predominantly 

transgranular to a predominantly intergranular mode. Cyclic life is 

obtained by integrating the above equation under the given boundary 

conditions. For continuous cycling, the following expression is 

obtained: 

Nf = [(m+l)/4A] (AE~/~)-(~') (;P)‘-~ 

where A = (T+C)/2 Mac/a,) 

For hold time tests, it is 

l/Nf = [4A/(Wl)] (AEP/Z)~+~ (8p)k-1 + j&Pmaxl m 

(10) 

(11) 

lotH [2A/(l+C/T)I !$I k dt + I ‘pminl m 

IotH [2A/(l+T/C)I I;,1 kdt 
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This model has been successfully applied to AISI 304, AISI 

316, Incoloy 800 and 2.25 Cr-1Mo steel at various temperatures. 

2.5.5 Antolovich's Oxidation Model: 

Assuming that there is a combination of environmental 

penetration and stress at which a microcrack can form, 

Antolovich67S81 proposed an oxidation model which can be basically 

expressed in terms of the equation: 

cJ max . 
i 

a P = co 
i 

0 max where i = maximum stress at initiation 

"i = oxygen penetration at initiation 

P,CO = material constant 

Further, the oxygen penetration for an initiated crack may be computed 

assuming that parabolic kinetics are obeyed: 

'i = a~i 

where a = geometric constant 

ti = time to initiation 

D = diffusion constant 

The applicability of this model can be examined by taking the time for 

crack initiation in a given test and comparing it to the shortest 

crack initiation time for a given set of tests: 

ai/ejo = (tj/t’i) M 
where aio = initiation crack length for shortest test 

to 
i = time corresponding to eio 
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In applying the oxidation model successful correlations have 

been obtained from systems: Rene' 80 at 871OC and 982"C, Rene' 77 at 

929OC, on Nimonic 90 and Mar-MOO2 at various temperatures. 
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3. EXPERIMENTAL 

3.1 Materials and Test Procedure: 

All the specimens used in this study had already been tested 

by Mar Test for the AGARD SRP program. The Rene' 95 specimens were 

tested under the direction of Air Force Materials Laboratory and the 

NARloy Z specimens under the direction of NASA Lewis Research Center. 

A brief description of the treatments and testing procedures, as 

reported82a83, ' is given below. 

3.1.1 Materials Processing and Heat Treatment: 

The chemical compositions and tensile properties of both 

materials are summarized in Tables I and II. Vacuum induction melted 

and vacuum arc remelted Rene' 95 ingot about 22.8 cm in diameter was 

given a homogenization anneal in the range 990°C to 1163OC for 3 hours 

and then furnace cooled. Two pancakes taken from the ingot were 

forged in the temperature range 1043OC to 1137°C to reduce them to 

about 40-50 percent above the final thickness. This was followed by a 

recrystallization anneal at 1163°C for one hour and cooling to 900°C 

at a rate greater than 93.3OC per hour. This results in uniform 

grains varying in size between 0.064 and 0.127 mn. Final reduction 

was done on these forgings at 1080°C to 1109OC. This imparts suf- 

ficient deformation to produce dynamic recrystallization or the 

"necklace" in the grain boundary region and a heavy dislocation den- 

sity in the recrystallized grains. They were then partially solution 

treated at 1093OC and aged at 760°C for 16 hours to produce a Y ' 
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structure in the maxtrix. Specimens were taken in the tangential 

direction of the pancake. 

NARloy Z was furnished in the centrifugally cast form. 

Following hot rolling it was solution annealed at 927OC and aged at 

482°C to let second phases precipitate out. The final material was in 

the form of a rectangular bar, 23.2 cm long x 5.1 cm x 4.1 cm. 

3.1.2 Test Procedures: 

Hourglass specimens with both buttonhead and threaded ends 

shown in Fig. l(a),(b) were used. The latter were whole Rene' 95, 

while the former were frictionally welded withIncone 718, 1.27 cm 

away from the buttonhead. Low cycle fatigue tests were conducted in 

air at 650°C, using a servo-hydraulic testing machine. For each test, 

diametral strain was controlled and then converted to total axial 

strain which was reported. All testing was done in a fully reversed 

mode (RE = -1, A = ~0 , where RE = maximum strain/minimum 
E 

strain; A 
E 

= strain amplitude/mean strain). To test the SRP model 

for high temperature LCF, the test types were designed as shown in 

Fig. 2. Continuous cyc7ing tests were run at frequencies of 20 and 

0.05 cycles per minute (cpm), using triangular waveform. For cyclic 

strain hold tests the ramp rate was the same as for 20 cpm tests while 

the maximum strain was held for either 1 or 10 minutes under tension 

(cp), compression (PC) as well as tension-compression (cc). The 

strain and stress waveforms for these tests are shown in Fig. 3. In 

cyclic creep tests, the load was ramped to a prescribed value and was 

then held allowing the specimen to creep to a fixed diametral strain 
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limit before reversing the load. In unequal frequency (strain rate) 

tests, slow-fast tests were carried out at frequencies of 0.05 and 20 

cpm for tensile going and compressive going modes respectively. For 

fast-slow tests the reverse scheme was employed. 

Threaded hourglass specimens shown in Fig. l(c) were used in 

the study of NARloy Z. All tests were performed at 538°C in high- 

purity argon (oxygen content less than 0.01 percent by volume) 

chamber. 3000 ppm of hydrogen was added to provide a slightly 

reducing environment for additional protection of the specimens. 

Testing procedure was the same as cited above for Rene' 95. The test 

matrix was also the same with the exclusion of cyclic creep tests. 

The strain rates used in continuous cycling tests ranged from 0.004 to 

1.0 percent set -1 . For hold time tests the dwell period was 5 

minutes. In unequal strain rate tests, strain rates employed were 

l/0.04, 0.04/l, 0.004/l and 0.0007/l percent set -' (tension 

going/compression going). 

3.2 This Investigation: 

In this study, detailed metallographic examinations were 

done on selected specimens of Rene' 95 and NARloy Z tested under con- 

tinuous cycling and with strain hold times. The total strain ranges 

for Rene' 95 were from 1.3 percent to 0.9 percent. For NARloy Z 

strain ranges were 2.6 percent and 0.9 percent. 

3.2.1 Scanning Electron Microscopy (SEM): 

Failed specimens were cut near the fracture surface after 

ultrasonic cleaning in acetone. The fracture surface and gage section 
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were examined with a 25 KV Cambridge Steroscan 600 SEM to characterize 

initiation sites, mechanisms of crack advance and formation of secon- 

dary cracks. 

3.2.2 Metallography: 

Following SEM examination the gage portion was sectioned 

longitudinally through planes containing the initiation sites and the 

specimen axis. These longitudinal sections were cold mounted with 

addition of the Alumina to the epoxy to prevent the occurrence of 

round edges during polishing. Standard techniques were used for 

metallographic preparation. Polished Rene' 95 specimens were either 

chemically etched with Kalling's reagent (29 CuC12, 12 ml HCl (37% 

concentration) 180 ml ethanol) or electroetched with a solution of 45 

percent acetic acid (99.7% concentration), 45 percent butyl cellusolve 

and 10 percent perchloric acid (70% concentration) at 20°C and 3V in 

Buehler polishing unit. The specimen surface in reaction with the 

solution is a circle with 1 cm in diameter. NARloy Z specimens were 

etched either with 5g FeC13, 15 ml HCl and 100 ml ethanol after 

polishing or by adding several drops of NH30H (29% concentration) to 

0.05 11 Alumina polishing abrasive. Etched specimens were then exa- 

mined with optical microscope/SEM to determine the nature of secondary 

cracking, to detect internal cavitations and to evaluate the impor- 

tance of carbides and intermetallic compounds on microcrack formation. 

The same techniques were also used to characterize the initial struc- 

ture of both materials. 
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3.2.3 Transmission Electron Microscopy (TEM): 

Small wafers were cut perpendicular to the specimen axis as 

close to the fracture surface as possible. These wafers were electro- 

polished by standard twin jet technique into thin foils. Mixture of 

250 ml methanol, 12 ml perchloric acid and 150 ml butyl cellusolve was 

used in electropolishing Rene' 95 at -3OOC and 30V. For NARloy Z a 

solution mixture of 100 ml HN03 (70% concentration) and 200 ml metha- 

nol was used at -25OC and 15V. The foil surface in reaction with the 

solution is a circle with 3 IMI in diameter. The low temperature was 

attained by using a Cryscool cooler. These thin foils were examined 

with a 200KV JEOL JEM-200A TEM to characterize the detailed 

microstructure and the deformation behavior of each system. 
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4. RESULTS AND DISCUSSION 

4.1 Rene' 95: 

4.1.1 Initial Structure: 

The microstructure of Rene' 95 forgings has been charac- 

terized earlier by Menon. a4 The undeformed structure of as received 

Rene' 95 specimens observed in this study was the same as reported by 

Menon. 

Fig. 4 shows the typical necklace structure of Rene' 95. 

The warm worked grains of average grain size 75u, are surrounded by a 

necklace of fine recrystallized grains about 4~ in size. Intermediate 

sized y' precipitates (size 0.5~) are uniformly distributed in the 

warm worked grains, giving a dark shade to these grains. MC carbides, 

high in Ti, Nb and W are also randomly scattered through the material. 

Details of the necklace region are revealed in the scanning micrograph 

of Fig. 5. The grain boundaries of recrystallized necklace regions 

are decorated with large Y' (size 1~). These are apparently larger 

than those inside the warm worked grains on the adjacent sides because 

of the partial solutioning. The white particles at the boundaries 

between the warm worked grain and the necklace region, are the MC 

carbides which are in relief after electroetching. Fig. 6 shows a 

transmission micrograph of the necklace region. The fine y ' (size 

0.05~), appearing as small light areas in the background, are, in 

fact, distributed evenly throughout the material. The recrystallized 

fine grains are seen to be free of dislocations. Many of them were 
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twinned as shown in Fig. 7. Here, a warm worked grain is on the left 

while the necklace region is on the right surrounding it. 'In the warm 

worked grain, the residual dislocation substructure introduced during 

the final forging is clearly evident, The intermediate sized Y ', 

providing a barrier to impede recrystallization or realignment of 

dislocations into polygonal cells, serves to stabilize the structure. 

4.1.2 Low Cycle Fatigue Test Results: 

The stress behavior of Rene' 95 during fatigue testing is 

available in the technical report AFWAL-TR-80-4075. For continuous 

cycling under total strain control, initially for a short period of 

time, it exhibited strain hardening. This was followed by strain sof- 

tening for the rest of the life. In hold time tests, stress usually 

relaxed rapidly to 80-90 percent of the maximum stress in the first 

fifteen seconds (see Table III) but remained almost constant 

thereafter. Won-zero mean stresses 85 were noticable, especially in 

tests at the lower strain ranges and with longer hold times. !n the 

case of tensile hold tests the maximum tensile stress decreased with 

cycles while the maximum compressive stress increased, i.e., the 

hysteresis loop shifted in compressive direction. As a result, the 

mean stress continued to shift in the compressive direction throughout 

the life. Shifts to a tensile mean stress occurred for tests under 

compressive hold but they were less dramatic. 

The results of LCF tests on Rene' 95 tested under continuous 

cycling and with strain holds at 650°C are summarized in Table 'III. 

All the stress and strain data listed were values at half life. Note 
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that the elastic component was much greater than the plastic one. 

This, in fact, is a common phenomenon in nickel-base superalloys in 

the strain range of general studies. The mean stress effects cited 

above are demonstrated in this Table by the differences between maxi- 

mum tensile and compressive stresses. 

Coffin-Manson diagram is shown in Fig. 8. On the basis of 

plastic strain range, tensile hold and continuous cycling, in general, 

appeared to exhibit longer life than compressive and balanced (both 

tensile and compressive) holds. Although differences in life did 

exist between different cycle types, they did not seem to be very 

significant. The trend in the large shift mentioned earlier, of the 

maximum tensile stress developed during hold time with respect to con- 

tinuous cycling, is shown in Fig. 9. At a given plastic strain range, 

compressive hold developed higher tensile stress than continuous 

cycling. Tensile and balanced holds had lower values instead. This 

shift of tensile stress was especially marked for tensile hold at 

lower strain ranges. The life of tensile hold here, is greater than 

that of continuous cycling as shown in Fig. 8. This seems to imply 

that besides the plastic strain range, stress also should be taken 

into account in determining the fatigue life. This is due to the 

marked effect of hold time on the maximum tensile stress. This point 

will be discussed in more detail later. 

4.1.3 Metallography: 

(i! Continuous Cycling (20 cpm) 

At higher strain ranges multiple crack initiation was 
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observed. A typical example is shown in Fig. 10. As apparent in Fig. 

10(a), there is a transgranular initiation followed by a mixed mode 

of propagation. Noting that intergranular cracking, in the case of 

necklace Rene' 95, means fracture path along the grain boundaries in 

the necklace regions, the grain boundaries on the fracture surface 

are, in fact, those of small recrystallized grains 4~ in size. At 

higher magnification, in Fig. 10(b), striations can be seen in the 

transgranular crack propagation region near the origin. MC carbides 

are readily observed on the fracture surface. Here, one MC carbide is 

situated right at the origin, \ti-ich was probably responsible for ini- 

tiation of the crack. Two other MC carbides are also seen near the 

origin, but apparently had been cut through during crack propagation. 

This was the case in most other crack initiation regions. Fig. 11 

shows another crack initiation region. Here, the crack probably had 

initiated intergranularly but followed by predominantly transgranular 

propagation. The striations are clearly visible on the fracture sur- 

face and are very brittle in nature. From examination of the longitu- 

dinal section, it is seen that majority of the cracks initiated 

transgranularly. In the case of crack growing more than one grain 

depth, it often changed directions upon crossing the necklace regions 

or as it travelled across a singie warm worked grain (Fig. 12). Vote 

that the texture of the specimens is such that warm worked grains 

were elongated in the direction of specimen axis. This, apparently, 

made the crack path more tortuous. Thus, grain boundary cracking is 

impeded. 
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-A little away from the initiation region, crack propagation 

is still by a mixed mode while faceting was frequently found in the 

warm worked grains (Fig. 13). Menon and Reimann50a71 have reported 

earlier, observation of faceting on tensile and fatigue fracture sur- 

face of necklace Rene' 95. They speculated it to be due to the 

microtwinning in the warm worked grains. Oblak and Owczarski6' have 

also previously reported, faceting on tensile fracture surface of 

thermomechanically processed Udimet 700, but they ascribed it to a 

possible path of failure along (111) slip planes. More recently, 

Mills86 observed facets on the fracture surface of Inconel X-750 

following tensile deformation. From examination of the longitudinal 

section, it appeared to have failed along well-defined slip traces. 

Therefore, he believed that the facets were a result of separation 

along dislocation channels which, in fact, are slip bands formed by an 

extensive planar slip of dislocations. For the case of necklace Rene' 

95, Mills' reasoning seems to be more applicable. This point will be 

discussed later in the section on deformed microstructure. 

At lower strain ranges, just as at high strain ranges, 

cracks often initiated at surface connected MC carbides, as shown in 

Fig. 14. Initial crack propagation appeared to take place transgranu- 

larly in the warm worked grains. Whenever it encountered the necklace 

region, the crack changed its path to follow the grain boundaries. 

This dual mode of cracking seems to be more extensive and distinct 

with decreasing strain range. Fig. 15 shows the region of crack ini- 

tiation and initial propagation of a specimen tested at 0.9 percent 
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total strain range. The warm worked grains were clearly delineated by 

the necklace surrounding them. In the warm worked grain where the crack 

initiated, the crack surface appeared to be very smooth such that even 

slip traces can be seen on the fracture surface. Although the grain 

did show slip band formation, there was no evidence to suggest that 

initiation was due to cracking along slip bands. Rather, a surface- 

connected MC carbide situated at the origin clearly suggests that the 

crack had initiated at MC carbide but not along slip band. Following 

the dual mode of cracking was the normal mixed mode which included 

those features like striations and facets in the warm worked grains. 

In a previous study 73 on crack initiation in necklace Rene' 

95 at room temperature, it was found that cracking of MC carbides 

seemed to play a significant role. In this study also, cracking of MC 

carbides was seen quite often on the gage surfaces of all the speci- 

mens examined. An example is shown in Fig. 16(a), depicting cracking 

of surface carbides. Fig. 16(b) shows two cracks which had originated 

from cracking of MC carbides and further propagated into the matrix. 

Thus, it can be concluded that crack initiation was due to cracking of 

the surface MC carbides, as those present in the crack initiation 

region on the fracture surface. 

Some of the MC carbides had fractured inside the specimen 

during deformation (Fig. 17). In specimens tested at higher strain 

ranges, internal cracks were occasionally seen (Fig. 18). Since the 

crack did not follow the path of grain boundaries, it could not 

possibly be due to the effect of creep. It is likely that the crack 
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had initiated at an internal MC carbide and further propagated 

transgranularly. 

On the gage surface of the specimens slip offsets were some- 

times observed (Fig. 19). However, no crack was found to initiate 

along these slip bands. Occasionally the edges of the fracture sur- 

faces were seen to be parallel to the slip offsets in the crack propa- 

gation region (Fig. 20). This, along with the facets found on the 

fracture surfaces indicate that slip band cracking did play a role in 

crack propagation. In view of the fractography it seems possible that 

extensive slip took place only near crbides and eventually crack 

initiation occurred in slip bands which contained carbides. 

(ii) Deformed Microstructure: 

Although the TEM study was somewhat limited, some features 

which are typical and representative were observed in the deformed 

microstructure. In the warm worked grains, besides a general increase 

in dislocation density, microtwins and slip bands were also 

present87 as shown in Fig. 21. Menon and Reimann50y71 have reported 

that the dislocation substructures retained in the warm worked grains 

was very effective in dispersing slip. This in turn, prevented early 

formation of intenGslip bands and forced the deformation to take 

place more homogeneously, as compared to the coarse planar slip that 

occurs in conventional superalloys. This reduced planarity of slip is 

also illustrated in Fig. 21. Here, slip bands (parallel to (111) 

planes) are closely spaced and often end at the interior of the grain 

rather than being wide spaced and crossing the entire grain.The regions 
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between slip bands also had a high denisty of dislocations, thus 

obscurring the prominence of the slip bands. 

In the last section, a question was raised as to whether the 

facets observed on the fraturc surfaces were. due to microtwinning or a 

result of planar slip in the warm worked grains. It was shown that 

the width of microtwins in Fig. 21 was much smaller than the hei.ght of 

facet steps shown in Fig. 13. Therefore, the facets cannot possibly 

be a result of microtwinning. Rather, it is believed that with 

increasing cycles the slip bands which were not intense in the 

beginning tend to become more intense. This is true especially in 

those ahead of the crack tips. Therefore, cracking along slip bands 

(facets) was always seen in the regions of crack propagation. 

The deformation in the necklace grains was planar which was 

also relatively homogeneous in that the interspacing between slip 

bands was very small (Fig. 22). 

(iii) Effect of Hold Time: 

When hold time was introduced into each cycle (irrespective 

of the nature of the hold), fractography revealed an intergranular 

crack initiation and early crack propagation except at lower strain 

ranges. Fig. 23 illustrates this intergranular cracking in specimens 

tested at 1.4 percent total strain range under tensile, compressive 

and balanced holds respectively. A mixed mode of cracking was again 

observed away from the origin with occasional facets and striations, 

as shown in Fig. 24, in the warm worked grains. On the longitudinal 

section, as shown in Fig. 25, most of the secondary cracks seen were 
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initiated in the necklace regions (grain boundaries). Fig. 26 shows a 

crack which although was initiated transgranularly, propagated predo- 

minantly along the necklace regions before meeting a warm worked 

grain. Due to the tortuosity of the grain boundaries, a pure 

intergranular cracking was hardly seen. 

At lower strain ranges, the initiation of cracks again 

appeared to be associated with MC carbide cracking. The dual mode of 

cracking, i.e. transgranular in the warm worked grains and intergranu- 

lar in the necklace grains, was again observed in all types of holds. 

It was particularly marked in tensile hold, as shown in Fig. 27. 

At the interior of the specimens, the damage was not pro- 

nounced, indicating that creep did not play an important role in the 

damage process of hold time tests. Considering the tendency for'the 

crack to initiate intergranularly on the surfaces with the introduc- 

tion of hold time], a possible involvement of environment appears to be 

implied. In Fig. 8 it was already shown that tensile hold resulted in 

life not less than that in continuous cycling. This, then, suggests 

that the cracking mode (initiation and early propagation) became 

intergranular under tensile hold in contrast to transgranular mode 

under continuous cycling. However, the life did not decrease 

correspondingly. It is clear that in the case of necklace Rene' 95, a 

decrease in life is not necessarily associated with intergranular 

cracking. The most likely reason for this is the role of tortuous 

morphology of grain boundaries mentioned earlier, in slowing down the 

fracture process when the crack path follows grain boundaries. 
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As shown in Fig. 8 at a given plastic strain range the dif- 

ferences in fatigue life between different cycle types became substan- 

tial at lower strain ranges. However, the mode of cracking still 

appeared to be very similar to that seen above. This then, implies 

that differences in fatigue life in this case resulted probably from 

the different crack propagation rates between the various cycle types. 

Recently Coffin 88 has described the importance of mean 

stress effects in terms of the transition fatigue life, i.e. the life 

where the elastic and plastic strains are equal. There the life 

exceeds the transition fatigue life, the greater the mean stress 

effect. The transition fatigue life for Rene' 95 at 650°C has been 

determined to be about 72 cycles.8g Consequently, all the tests in 

this study were conducted above the transition fatigue life. Hence, 

consequences of the maximum tensile stress (or mean stess) should be 

considered. This is particularly important when considering the fati- 

gue life controlled by crack propagation, assuming that microcracks 

have nucleated early in life. Although the plastic strain range 

remains the same for different cycle type tests, the maximum tensile 

stress can, indeed, influence the local plastic strain at the crack 

tip. Higher the maximum tensile stress, greater is the crack opening 

and faster is the crack growth. This may be the case in Rene' 95, 

since cracks often initiated at MC carbides. 

Previously, in the case of LCF hold time behavior of Cast 

Rene' 80 at a plastic strain range of 0.32 percent, Lord and 

Coffin62 have already demonstrated that mean stress effects could 
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account for the life behavior in a qualitative sense. The same 

conclusion can also be drawn in this study. Further, a quantitative 

dependence of life on maximum tensile stress is shown in Fig. 28. The 

data seem to fall generally onto three lines, corresponding to the 

three respective tensile hold times - 0, 1 and 10 minutes. The 

observed behavior not only illustrates the important role of the maxi- 

mum tensile stress in determining the fatigue life, but also 

demonstrates the influence of tensile hold time on fatigue life. 

Whether this behavior has any mechanistic basis is not known at the 

present time. However, it tends to imply that crack growth is pro- 

moted by introduction of a tensile hold. 

Previously Wright and Anderson" found that in directionally 

solidified Rene' 120, under strain controlled testing, the developed 

stress levels and the lives varied with orientation. This was because 

of the dependence of the elastic modulus on orientation. 

Consequently, they found that most of their LCF data for various 

orientations fit one master curve, when the maximum tensile stress 

rather than total strain range was plotted against life. Considering 

LCF as mainly a process of crack growth the authors recommended using 

maximum tensile stress as a life prediction parameter. 

In this study, due to the effect of the two variables, 

plastic strain range and maximum tensile stress, comparison of the 

lives between cycle types became difficult. On the basis of maximum 

tensile stress alone, life seems to depend only on tensile hold time. 

Therefore, quite contrary to the result shown in Fig. 8, simply on the 
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basis of plastic strain range, life of tensile hold is comparable to 

that of continouous cycling but greater than that of compressive hold. 

Although the relative contribution of these two variables in deter- 

mining the fatigue life is not clear, however, the effect of maximum 

tensile stress is distinct and has to be taken into account in any 

life prediction scheme. 

4.1.4 Applicability of Fatigue Model: 

With the experimental data in this study for necklace Rene' 

95 at 65O"C, four fatigue life models were evaluated earlier. a' Their 

applicability and limitations in predicting lives corresponding to 

various cycle types are summarized in Table IV. The established criterion 

for accepting predicted lives was that predicted lives should be within a 

factor of two of the observed lives. If the predicted vaiues were 

greater than twice the observed lives, the model was considered to 

overpredict. By the same token, when it *tias less than half the 

observed lives, the model was regarded as underpredicting the lives. 

In general, all the models showed a tendency to underpredict 

lives of tensil hold, Also, in the case of compressive hold, with 

the exception FS model, they all resulted in overprediction. As 

mentioned earlier under tensile hold the creep effects (internal 

damage) in Rene' 95 were almost absent. But, 
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because of the comparatively lower maximum tensile stress, life of 

tensile hold was greater than that of compressive hold. Thus, 

underprediction of the lives by these two models for tensile hold and 

overpredition for compressive hold is understandable. 

In applying Ostergren's model, the time-dependent, wave shape 

independent situation was considered, where v = l/(r o + ~~ + T c) 

(cyclic frequency). Even though in this life prediction scheme, maxi- 

mum tensile stress was incorporated into the damage term, predic- 

tion of lives at lower strain ranges and under longer hold times was 

difficult. It should be noted. that at lower strain ranges higher 

degree of scatter in the data is always present in part due to the 

uncertainty in the experimental procedures. This uncertainty in turn 

makes accurate life predictions more difficult. from this study, it 

is recognized that both plastic strain range and maximum tensile 

stress can be the variables controlling the fatigue life. Interaction 

between these two in relation to the different cycle types is not ade- 

quately understood at the present time. Further, the time dependent 

factor in determining life seems to be the tensile hold time rather 

than the cycle period (reciprocal of cyclic frequency) used in 

Ostergren's model. Thus, question still remains as to the validity of 

the damage term employed in the Ostergren's model. 

Overall, the LCF behavior of nickel-base superalloy Rene' 95 

\qas seen to be quite different from that of stainless steel. However, 

it was similar to that of Rene' 80" with no pronounced creep effect 

under tensile hold. The life prediction models that associate creep 
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with tensile hold were rendered inapplicable. Due to the limited 

information available in this study, no attempt was made to develop a 

suitable life model to describe the LCF behavior of Rene' 95. It is 

believed that any life prediction scheme, in order to be applicable, 

should incorporate the fact that tensile hold promotes crack propaga- 

tion and the effect of maximum tensile stress. Before attempting to 

develop any model, more work needs to be done in estimating the rel a- 

tive proportion of life corresponding to crack initiation and propaga- 

tion as well as the possible involvement of environment, which was 

reported in creep for Cast + Forged Rene' 95'3 and in fatigue for HIP 

+ Forged Rene' 959, with respect to different cycle types. 

4.2 NARloy Z: 

4.2.1 Initial Structure: -- 

The initial structure of NARloy Z is shown by the optical 

micrographs in Fig. 29. The average grain size was determined as 150~~ 

( ASTM No. 3) by linear intercept method. The intermetallic compound 

resulting from the addition of Zr to the Cu-Ag entectic system is 

visualized and has been identified as Cu-lOAg-22.5 Zr with a tetrago- 

nal structure. 74 Two types of precipitates in the Cu rich matrix are 

shown in Fig. 30(a) transmission micrograph. One of these is larger, 

and tends to grow on certain crystallographic planes, the other rela- 

tively small and evenly distributed in the background. Analyzing the 

diffraction pattern shown in Fig. 30(b) using the selected area 

diffraction technique, the former ts identified as Ag which gives rise 

to rings and the latter, Cu20 (cuprous oxide) which gives rise to 
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superlattice spots. Ag precipitates, having FCC structure, normally 

are found in the form of plates, lying parallel to (111) or (100) pla- 

nes of the Cu matrix with random directions. " This is the reason why 

rings, corresponding to Ag, are present in Fig. 30(b) under (111) 

diffraction. Cup0 precipitates, having C3 cubic structure, 91 exhibit 

orientation same as the Cu matrix. The slightly different lattice 

parameters make both precipitates semi-coherent. Rockwell 

International Inc., who developed this material did not report the 

presence of Cu20 which is probably a result of internal oxidation. 

4.2.2 Low Cycle Fatigue Test Results: 

Table V summarizes the results of LCF tests at 538OC under 

continuous cycling and with strain holds. The higher ductility and 

low strength of NARloy Z is reflected by the plastic component much 

greater than the elastic one. The life, therefore, was dominated by 

the former and was truly in the LCF regime. For continuous cycling 

tests, stress range was very sensitive to strain rate especially in 

the high strain range. For hold time tests maximum tensile stress rfas 

only dependent on the strain range and almost independent of the cycle 

character. Stress relaxation during hold time was very pronounced in 

NARloy Z. This is indicative of significant creep and/or creep crack 

growth, i.e. the creep effect may have played an important role in the 

damage process. The Coffin-Manson diagram is shown in Fig. 31. 

Apparently cyclic life decreased with decreasing strain rate under 

continuous cycling. Further, tensile hold was the most detrimental 

among the cycle types in interest. Life in the case of compressive 
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hold was comparable with that of continuous cycling at high strain 

rate of 1.0 percent set-'. It is worthwhile noting that the dif- 

ference in lives between cycle characters are much greater in NARloy Z 

than' in Rene' 95. 

4.2.3 Metallography: 

(i) Effect of Frequency: 

In specimens tested at high strain rate, integranular sur- 

face cracks had initiated and grown two or three grains in depth by a 

boundary mechanism before changing to transgranular. Such a tran- 

sition from intergranular to transgranular is shown in Fig. 32(a). 

The striations are clearly seen in the region of transgranular crack 

propagation (Fig. 32(b)). No significan t differences were seen in 

fracture details between high strain range (2.6 percent) and low 

strain range (0.9 percent) tests. They both had a multiple crack ori- 

gins and final rupture of the specimens took place in the center of 

the overload region. A number of grain boundaries on the gage surface 

had undergone decohesion. As shown in Fig. 33, cracking of some of 

these were connected with the fracture surface. From examination of 

the longitudinal section, it is seen that most of these intergranular 

surface cracks either had ceased growing right after initiation as in 

Fig. 34(a) or had grown two or three grains in depth (Fig. 34(b)). 

The fact that boundary cracking is limited to regions near the surface 

seems to imply that it is was probably either environmentally assisted 

or due to a creep effect (where the grains are unconstrained and 

sliding is easier). The role of environment will be discussed in 
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greater detail later. Fig. 34(c) shows an intergranular surface crack 

which had propagated like the main crack, transgranularly into the 

matrix. 

Away from the surface, intergranular damage in the form of 

wedge type cracking (Fig. 35(a)) and cavitation (Fig. 35(b)) was 

observed at high strain range. However, considering the fact that the 

main crack propagated by a transgranular mode, such damage does not 

seem to play an important role as far as crack propagation is con- 

cerned. 

As the strain rate decreased, cracking became predominantly 

intergranular and striations were absent from the fracture surface, as 

shown in Fig. 36. Extensive grain boundary cracking on the gage sur- 

face (Fig. 37) was again observed in low strain rate tests. 

Discoloration of the specimens and obscuring of the fracture details 

in Fig. 36 indicate that oxidation had occurred during testing. The 

oxidation is probably due to the reaction of the trace of oxygen 

and/or moisture in the Argon environment. Thus even though the 

environment was supposed to be jnert, in reality; environmental con- 

tamination was still present. As seen in Fig. 37, preferential grain 

boundary oxidation is more pronounced in this case than in high strain 

rate tests (Fig. 33). Meanwhile, on the longitudinal section the sur- 

face cracks seemed to have grown deeper into the matrix (Fig. 38), as 

compared to cracks in the case of high stain rate. These phenomena 

occur because of the longer exposure of the specimens to the environ- 

ment (longer duration of testing) tested at low strain rate. Internal 
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intergranular damage, though it was again observed at low strain 

rate, was not extensive (Fig. 39). This raises the question 

whether the intergranular fracture in low strain rate tests was a 

result of the link-up of internal cracks or due to the effect of 

environment. Evidence of oxidation on the entire fracture surface 

suggests the involvement of environment. However internal cracking is 

unaffected by environment. The presence of longer surface cracks 

(Fig. 38) and the fact that specimens failed at the center indicate 

that fracture is a result of propagation of surface cracks along grain 

boundaries radially toward the center before final rupture. The same 

observations were made from specimens tested at low strain range 

except that internal damage pias absent. Failurs path for the 10;~ 

strain rate tests indicates that intergranular fracture was probably 

due to the environmental effectsrather than the link-up of internal 

cracks. Coffin76 also observed intergranular cracking in OFHC copper 

tested at a strain rate of 0.0033 percent set -1 in air and attri- 

buted it to environment-controlled fatigue. 

Metallography of the specimens indicated that the decrease 

in cyclic fatigue life with decreasing strain rated was associated 

with a change in fracture from transgranular to intergranular crack- 

ing. Such frequency dependence of fatigue life and type of fracture .' 

is attributed to a greater environmental involvement with decrease 

in frequency. This is consistent with the previous 
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observation and conclusion made by Gel1 and Duquette in A286 tested in 

air.40 It is gene'rally believed that oxidation promotes surface 

intergranular initiation and propagation along the grain boundaries 

which are the easiest diffusion paths for oxygen. The degree to which 

the fracture is intergranular, then, depends on the material, fre- 

quency and strain rate. 

(ii) Effect of Hold Time: 

As indicated in Table V the cyclic lives were comparable for 

both compressive hold and continuous cycling at high strain rate. 

This fact is also borne out by fractography. Fig. 40 shows the tran- 

sition of cracking from intergranular to transgranular under 

compressive hold, as previously seen in Fig. 32(a) Striations can be 

seen at higher maginfication but are obscured by estensive surface 

oxidation. Preferential grain boundary oxidation on the side surface 

was severe, especially in the specimen tested at low strain range 

(Fig. 41). These specimens had the longest life time among the speci- 

mens examined. Internal and surface cracks were both present,with no 

difference from continuously cycled material. A unique feature noted 

in the specimen tested at low strain range was the evidence of 

recrystallization in the gage section, as shown in Fig. 42. A similar 

-22 observation was made by Pavinich and RaJ in Cu-Si alloy under 

constant load at BOO'C, and in vacuum - cast copper under fatigue at 

500°C by Wigmore and Smith.75 This phenomenon is, apparently, a 

result of dynamic recrystallation which occurred during the long dura- 

tion of testing the specimen was subjected to. 
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Under tension hold, cracking was predominantly intergranular 

(Fig. 43). The dimples, resulting from final overload rupture, were 

distributed uniformly rather than being concentrated in the center. 

Intergranular cracks observed at the interior in this case (Fig. 44) 

seem to be much longer than those seen previously. This is due to the 

interlinkage of several cracks. Internal damage was seen in specimens 

tested at both high (Fig. 44) and low strain ranges, as illustrated in 

Fig. 45. Notice that in Fig. 45 an fnternal crack is linked up with a 

surface crack. In this case failure is due to the link-up of internal 

intergranular cracks and concurrent intergranular propagation of 

cracks initiated externally. The relative importance of the in- 

ternal and external cracks is not known at present. 

Tensile hold is more damaging than compressive hold for 

NARloy Z, as in stainless steel. 31-33 Fracture in the former case is 

intergranular mainly due to creep and environmental effects, \Jhile it 

is transgranular in the latter case, similar to that in continuous 

cycling at high strain rate. 

4.2.4 Damage Mechanisms: 

From the metallographic results it is clear that in NARloy Z 

three types of damage occur during fatigue associated with the effects 

of creep, environment and cyclic strain. For all the cycle characters 

of interest, cracks always initiate at grain boundaries due to e'ther 

the effect of environment or creep effect. The fatigue life was, 

therefore, controlled by the fastest damage mechanisms that are 
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operating under the test conditions. For continuous cycling 

at high strain rate, creep and environmental effects 

are very minor. Therefore, cracking is transgranular resulting from 

cyclic strains. -As strain rate decreases; both creep and environmen- 

tal effects become important. Intergranul ar cavitatjons and tri pie 

point cracks though formed during the tensile half cycle are substan- 

tially re-welded during the compressive half cycle by slovrly reversed 

grain boundary sliding. This reversal of creep damage renders the en- 

vironmental effect a dominant source of damage. The interaction of the 

hostile environment with the cracks during tensile half cycle leads to 

intergranular fracture. In the case of compressive hold, the tensile 

going strain rate is still high such that both creep and environmental 

effects are insignificant. therefore, a normal transgranular fatigue 

crack results. On the other hand, in the case of tensile hold both 

creep and environment effects should be considered. The internal damage 

(cavities or wedge cracks) produced during the hold time can hardly be 

rz-welded due to the high compressive-gosng rate. As a result, 'inkup 

of cracks takes place at the interior. Concurrently, during tensile 

hold time environmental attack takes place, resulting in intergranular 

cracking starting from the surface. The rate of combination of these 

two processes is faster Sian that of the external damage from the 

environment alone. Eventually fracture is intergranular mainly due to 

both creep and environmental effects. 

Thus, each damage meciianism seems ta be favored tinder cer- 

tain test conditions. Creep effects dominate in the case of tests 
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with slow tensile-going rate or tensile hold time but fast 

compressive-going rate. Slow tensile-going rate, regardless of 

compressive strain rate, favorsenvironmental damage. Cyclic strain 

damage becomes most important when the tensile-going rate is fast. 

For NARloy 2 in terms of cyclic life (Fig. 31), creep is most 

damaging, followed by environmental effect, while cyclic strain is 

relatively the least harmful. 

More data from continuous cycling and unequal strain rate 

tests are shown in Fig. 46 with the data from Fig. 31 superimposed. 

Note that for continuous cycling at three different strain rates, life 

decreases with decreasing strain rate. This illustrates that environ- 

mental effect is time dependent in general. In unequal strain rate 

tests, slow-fast tests are more damaging than fast-slow tests, as 

implied in the above discussion. In slow-fast tests life decreased 

with decreasing tensile-going rate. This illustrates the time depen- 

dence of creep process. A qualitative damage picture with respect to 

the test conditions is summarized in Table VI. 

4.2.5 Deformed Microstructure: 

Transmission electron microscopic analysis of LCF tested 

microstructure was done on selected specimens. In specimens tested at 

low strain range at the low rate of cycling and with tensile hold, a 

varied substructure was seen in different grains. Fig. 47(a) shows a 

random distribution of dislocations in one grain with a low dislocation. 

Most of these were pinned by Ag precipitates which had coarsened 

during testing. In the same specimen subgrains had also formed in 
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some grains (Fig. 47(b)). The variation of substructure I has been 

observed earl-ier in austenic stainless steel under tensile 92 and fati- 

gue deformation. 93 It is mainly due to the difference in orientations 

of the grains with respect to the stress axis, which results in dif- 

ferent shear stresses on the active slip planes in different grains. 

Fig. 47(a) represents a grain .&ich was less favorably oriented to the 

stress axis. Low shear stress on the active slip planes did not 

enable dislocation to overcome the precipitate barriers, except by 

thermally activated cross-slip and/or climb. In the case shown in 

Fig. 47(b) the grain was favorably oriented and shear stress was suf- 

ficiently high to let dislocations overcome the precipitates by 

looping along with cross-slip and/or climb. Eventually dislocations 

rearranged themselves into a low energy configuration like subgraio 

boundaries. Both stress and time are expected to be two main factors 

in determining the detailed deformed substructure, e.g., the former 

may control the subgrain size, 93 while the latter can promote cross- 

slip and may influence the relative orientations between the 

subgrains. 94 
The occurrence of recrystallization under compressive 

hold at low strain range is apparently an extreme case representing 

the time effect. More TEY study needs to be done to completely 

characterize the deformed microstructure of WPicy Z with respect to 

stress (strain) and time. 

4.2.6 Applicability of Fatigue Life Models: 

In vi?w of the limited data available for each cycle type, 

an evaluation of each model for its life prediction capability was not 
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included in the scope of this study. However, according to their 

inherent assumptions in relation to the,damage mechanisms discussed in 

the previous section, an attempt will be made to suggest the possible 

applicability of them to certain cycle characters for NARloy Z. 

It has been shown that in NARloy Z, each cycle character has 

specific damage mechanisms associated with it, e.g., cyclic strain 

with continuous cycling at high strain rate (pp cycle) and compressive 

hold (pc cycle), environmental effect in the case of continuous 

cycling at low strain rate (cc cycle) and both creep and environmental 

effects with tensile hold (cp cycle). Earlier, it has been mentioned 

that the fatigue life is indeed determined by the plastic strain com- 

ponent in NARloy Z. Therefore, the conventional Coffin-Manson law is, 

apparently, applicable to pp and pc cycles v/here the life is cycle- 

dependent rather than time-d2pendent and damage is due to cyclic 

strain only. In the case of cc cycle, Coffin's frequency modified 

model, which incorporates the time-dependent factor to account for the 

sensitivity of crack growth rate and mode of cracking to the 

environment, 88 appears to be more applicable. As far as cp cycle is 

concerned, the case seems to be more complicated. Even though 

environmental and creep effects ar2 two apparent damage modes, the 

possible physical interaction between them cannot be ruled out. For 

example, oxidation along the grain boundary during the tensile half 

cycle may inhibit the re-welding of the voids during the compressive 

half cycle. This, in turn, promotes internal damage. Among the life 

prediction methodologies, none of them appears to incorporate the 
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possible interaction between these two damage modes. Thus, it is dif- 

ficult to make relevent suggestions as to the model applicable in pc 

cycle. 

In summary, instead of evaluation of each model for all 

cycle characters, suggestions have been made as to the possible appli- 

cability of a certain model to a certain cycle character in terms of 

damage mode (Table VI). As far as the adequacy of the damage terms 

employed in these models to describe the corresponding damage mecha- 

nisms is concerned, in view of the limited data available (two for 

most cycle types) the author has no comments at this stage. it should 

be realized that the development of a life prediction scheme for a 

particular system is more complicated than the actual way most of the 

existing models nere developed. Basically, it involves procedures as 

follows: 

Ii) identify the damage mechanisms 

(ii) identify the variables that affect the mechanisms 
W%,.,. 5 plastic strain , maximum stress, mean 

, frequency, hold time, strain rate, etc. 

(iii) quantify (i) as functions of (if). 

(iv) identify critical damage tolerance. 

w formulate fatigue life by combining (iii) and (iv). 
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5. SUMMARY AND CONCLUSIONS 

Damage mechanisms were studied in two candidate materials for 

aerospace applications. They are the nickel-base superalloy Rene'95 

and copper base alloy NARloy Z, exhibiting quite different microstruc- 

tures, strengths and ductilities. All the specimens examined in this 

study were already tested earlier for the AGARD SRP program. 

Continuous cycling and hold time tests were performed at 650°C for 

Rene '95 and at 538OC for NARloy Z. Optical, scanning and 

transmission electron microscopy were used to determine the defor- 

mation mode and fracture characteristics. The important conclusions 

derived from this investigation are: 

1. In the case of Rene '95, planar slip and microtwinning are 

the two modes of deformation, while dispersive slip is the 

mode of deformation in NARloy Z. 

2. The' elongated warm worked grains in Rene '95 result in the 

tortuosity of the grain boundary morphology, which in turn 

acts to impede intergrannular cracking. 

3. Within the total strain ranges of interest, fatigue life 

is dominated by plastic strain range in NARloy Z, repre- 

senting a material of low strength and high ductility, 

while it is elastic strain range in the case of Rene '95, 

representing a material of high strength and low duc- 

tility. 
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4. Crack initiation in Rene '95 under continuous cycling is 

mainly due to a cracking of surface MC carbides. A mixed 

mode of propagation with a faceted fracture morphology is 

observed at high strain ranges. At lower strain ranges, a 

dual mode - transgranular in worked grains and intergranu- 

lar in necklace regions - is typical. 

5. In hold time tests for Rene '95, at high strain ranges, 

regardless of the nature of hold, cracks initiate predomi- 

nantly at grain boundaries and propagate by a mixed mode. 

At low strain ranges, however, crack initiation is asso- 

ciated with MC carbide cracking and initial propagation is 

by the dual mode. 

6. In Rene '95 at a given plastic strain range, compressive 

hold appears more detrimental mainly due to a higher maxi- 

mum tensile stress produced. The dependence of fatigue 

life on maximum tensile stress is demonstrated by the data 

falling onto three separate lines corresponding to the 

three tensile hold times, in the life against maximum ten- 

sile stress plot. 

7. In UARloy Z, under continuous cycling crack initiation at 

grain boundaries is due to environmental and/or creep 

effects. As strain rate decreases the mode of crack pro- 

pagation changes from transgranular to intergranular 
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because of greater environmental involvement resulting in 

a decrease in life. 

8. At a given plastic strain range, tensile hold is more 

detrimental than compressive hold in NARloy Z. Life of 

compressive hold is comparable with that of continuous 

cycling at high strain rate and so is the fractography. 

Intergranular cracking in the case of tensile hold, which 

results from the concurrent effects of creep (irreversible 

internal damage) and environment, makes it most detrimen- 

tal among the cycle characters of interest. 

9. A basic requirement for a life prediction scheme to 

to be applicable to Rene' 95 is incorporation of 

the effect of maximum tensile stress, and the fact 

that tensile hold promotes crack propagation. 

10. In the case Of NARloy Z, a life prediction model 

based on observed damage mechanisms is needed. 
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TAGLE I 

Al 

P 

Si 

B 

S 

C 

co 

Ti 

Cb 

w 

Cr 

Zr 

Fe 

MO 

Mn 

Ni 

&I 

cu 

CHEMICAL COMPOSITION (yt%)(82y83) 

Rene' 95 NARloy Z 

3.550 --- 

0.010 --- 

0.100 -me 

0.012 --- 

0.002 --I 

0.150 s-m 

8.000 --- 

2.500 -de 

3.560 -me 

3.570 --- 

13.800 --- 

0.040 0.500 

0.130 --- 

3.500 --- 

0.100 -Be 

Bal. --- 

--- 3.000 

w-e Bal. 
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TABLE II. 

I 

TENSILE PROPERTIES(82y83) 

Temp. Ex 1O-3 0.2% YLD UTS RA-% 
("Cl (MPd (MPa) (MPa) 

Rene '95 
(Cast + 
Forged) 

20 -mm 1317.0 1613.0 11.8 

650 175.2 1207.0 1448.0 12.4 

NARloy Z 20 127.0 198.3 316.2 51.0 

538 98.6 130.0 152.7 41.5 



TABLE III 

LCF TEST DATA OF RENE '95 AT 650°d8') 

Spec. Test* 
(Cycl) Xr 

Nf 
AE 0 

No. Type 
P win AU 

(J EdI "c%$ tf (hrs) 
- _-.-_. - _-_--.-_.- -._--___- -.__- -_.--_-- __.----.- -- 

21 
17 

:; 
240 
26 
27 
268 
30 
234 

235 
239 

245 

1; 
7 

12 
39 
38 

233 
33 

237 
228 

40 

PP 
PP 
PI' 
PP 
PP 
PP 
PP 
PP 
PP 
' 
bF: 
PP 

cpw 
CPWJ 
cpwo 
cpwo 
CPU/O 
cp(l/O 
cpwo 
cdl/D 
cpwo 
qwo 
cpw 
cpwv 

203 2.2 0.79 180 
234 2.0 0.53 178 
307 1.8 0.408 175 
461 1.6 0.31 168 
463 1.6 0.285 161 
784 1.4 0.217 156 

1629 1.2 0.104 140 
2369 1.2 0.006 140 

16215 0.9 0.012 107 
19160 0.9 0.013 99 
22364 0.9 0.0065 99 
28697 0.88 0.013 107 

190 
195 
186 
173 
173 
164 
146 
148 
125 
134 
129 
120 

370 0.17 
373 0.20 
361 0.26 
341 0.38 
334 0.39 
320 0.65 
286 1.36 
288 2.14 
232 13.50 
233 15.97 
228 18.64 
227 23.91 

171 2.0 0.67 171 194 365 
255 1.8 0.522 161 187 348 
257 1.6 0.297 160 191 351 
748 1.4 0.206 138 178 316 

1289 1.2 0.089 129 166 295 
1781 1.1 0.089 108 154 262 
5013 1.0 0.49 101 148 249 
6519 1.0 0.61 89 158 247 
9609 1.0 0.38 82.8 159 241.8 

16418 0.9 0.046 70.3 152 222.3 
481 1.4 0.185 130 191 321 

1705 1.2 0.126 108 178 286 

19.1 

El 
1.67 
4.8 
1.5 
1.9 
0.51 
1.20 
7.56 
6.20 

2.99 
4.47 
4.51 

,13.09 
23.02 
31.17 
87.72 

114.08 
168.15 
287.57 

80.57 
285.58 



TABLE 111 (CONTINUED) 

LCF TEST DATA OF RENE '95 AT 650"C(82) 

Spec. Test* fif AeT AE u cl 
P max min AU ' rel 'rel tf 

No. Type (CYCl) 1%) (Ksi) Ten ComP h-s) 
I_ ------- -----.---.---_. - --- 

6 
11 
14 
8 

13 
241 

*iFi 
222 
41 

253 

1 

3: 
9 
4 

15 
229 

28 
31 

230 

* w: 

Pc(O/U 207 1.8 
;:I:::’ 

pc Wl 1 

209 219 1.6 1.G 

413 1.4 

;:I:;: 1 1940 846 1.2 1.1 

;: i::j I 
3093 
4619 i:; 

pa/w 224 pcww 283 ::; 
pc(O/lO) 1397 1.0 

CCW) 156 1.8 
cc(l/l 1 238 1.6 

cc( l/l 358 cc(i/l) 959 ::; 

::{$\ 1215 1288 1.0 1.0 
cc(l/!) 5277 0.9 
cc(lO/lO) 115 1.8 
cc(10/10) 199 1.4 
cc(10/10) 331 1.2 

0.429 178 181 359 
0.468 162 161 323 
0.324 177 174 351 
0.292 165 158 323 
0.09B 156 140 296 
0.049 141 130 271 
0.0103 124 123 247 
0.029 127.4 101.4 228.8 
0.136 176 155 331 
0.185 164 117 281 
0.0305 141 110 251 

0.55 181 196 377 
0.35 170 184 354 
0.20 150 172 322 
0.12 135 154 289 
0.11 120 134 254 
0.078 117 136 253 
0.025 95 128 223 
0.70 179 193 372 
0.50 158 171 329 
0.16 142 160 302 

Tensile hold time/compressive hold time in minutes. 

28.6 
18.6 
9.7 
7.5 

10.8 
6.2 

5::: 
49.0 
18.7 

15.0 
15.8 
10.7 
6.2 
2.3 
1.4 
0.4 
1.4 

145:: 
0.7 

21.6 
14.0 

El 
6.7 
5.1 

4;.; 
43:1 
15.2 

3.5 
3.66 
3.83 
7.3 

14.8 
33.95 
54.12 
80.83 
37.5 
47.4 

234.0 

5.19 
8.07 

12.13 
32.48 
41.52 
43.65 

179.42 
38.41 
65.85 

110.55 

b 
ID I 



TABLE IV 

APPLICABILITY AND LIMITATIONS OF THE LIFE MODELS FOR RENE '95(8g) 

20 cpm cp pc cc - 

Strain range Applicable Underpredicts Overpredicts Applicable 
Partitioning at long lives 10 min. Holds 

Frequency 
Separation 

Applicable Underpredicts Applicable Applicable 
at short and 
long lives 

Ostergren Applicable Underpredicts Overpredicts Applicable 
at long lives 10 min. holds 

Damage Applicable Underpredicts Overpredicts Applicable 
Rate at long lives at all lives 

--- -.A 



TABLE V 

LCF TEST DATA OF NARloy Z AT 538"C(83) 

Spec. Test* ldf Act 
AEP 4en E camp a max u min 50 a rel a rel tf 

No. Type (CYCl) (16) (%s-1) (MPa) Ten CmP h-s) 
---------------- -.------ --_------~_~__- -_-_ ---_ _ -- 

118 
117 

23 
21 

42 PC(O/5) 337 2.6 2.42 0.2 0.2 127 
43 PC(O/5) 2981 0.9 0.76 0.2 0.2 105 

40 
38 

PP(LR) 116 2.6 2.42 
PP(LR) 787 0.9 0.72 

PP (IiR) 339 2.6 2.27 
PP(HR) 3586 0.9 0.64 

cp(5/0) 75 2.6 2.42 0.2 0.2 128 
cp(5/0) 262 0.9 0.73 0.2 0.2 110 

0.004 
0.004 

1.0 
1.0 

0.004 
0.004 

1.0 
1.0 

* LR: low strain rate 
HR : high strain rate 
o/5: 5 min hold at compression 
5/D: 5 min hold at tension 

177 42 
173 101 

325 0.53 
255 1.8 

138 265 u5 30.5 
105 210 72 256. 

143 271 76 
122 232 60 2;:: 

--~--.__----- 

I 
U 
P 
I 



TABLE VI 

CONTROLLING DAMAGE MODES AND POSSIBLE APPLICABLE FATIGUE 

LIFE MODELS FOR SELECTED TEST TYPES FOR NARloy Z AT 538OC 

_.--- -_-- --_. --------- -- --.~- -- 

TEST TYPE ~___________ -- 

Continuous Cycling. Tensile Hold Compressive Hold 
High ; Low E (or Slow-Fast) (or Fast-Slow) 
--- --- ---- -~~ 

fracture surface transgranular intergranular intergranular transgranular 

interior minor grain minor grain extensive grain minor grain 
boundary damage boundary damage boundary cracking boundary damage 

environment local to the deep into the going into the local to the 
surface matrix matrix surface 

controlling cyclic strain environmental creep and environ: cyclic strain 
damage mode damage damage mental damage damage 

model Coffin-Manson Coffin's fre- may be SRP model Coffin-Manson law 
1 aw quency modi- 

,fied model 
-------- ---------.--.------ - 
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.50 2 
(1.27 -+ 

i 

(a) 

(b) 

‘Y~,-I r I 
l---i 

(.635-k-.003) , (1.27o :;;;; ) 

I .16/ t -- 

m-l L .250f.001 DIA I nnr, 

1.50 k.05 RADIUS 

INCH 
(CM) 

6.35 
NBS Thread 
.75-i0 WC 

INCH 
c w 

Fig. 1. Hourglass fatigue specimens of Rene' 95 with botton- 
head (a) and threaded ends (b). Specimen. of NARloy Z with 
threaded ends (c). Unit used for each specimen is indicated 
on its lower right corner. 
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@I CP cycle: 
stress-hold. 

ACPP? G7 ; 

AGPC I 
I 

(el PC cyclk 
stress-hold. 

(h I CC cycle; 
stress-hold. 

A~PP B 
(al PP cycle: high- 

strain rate. 

IC) CP cycle. 
strain-hold. 

(f) PC cycle; 
strain-hold. 

I 

CCPP /, qc 

B 

i’; 

I 
/ 

(i) CC cyck 
strain-hold. 

B ACPP + 
MCP 

td) CP cycle. 
lowlhigh 
strainrate. 

(g I PC cycle: 
high/low 
strainrate. 

bPP+ l9 ‘cc 

(jl CC cycle: 
low strainrate. 

Fig. 2. Examples of isothermal test cycles 
for testing strain-range partitioning model. (11 
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CONTINUOUS STRAIN CYCLING 

TENSION STRAIN HOLD 
E a 

T 

COMPRESSION STRAIN HOLD 

TENSION AND COMPRESSION STRAIN HOLD 

Fig. 3. Waveforms and resulting hysteresis loops 
for tests under continuous cycling and with 
strain hold times. 
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Fig. 4. Optical micrograph of necklace Rene' 95 showing 
the warm worked grains and the necklace regions. Arrows 
indicate MC carbides. 

Fig. 5. SEM micrograph of the necklace structure showing 
large y' an the necklace grain boundaries and the inter- 
mediate sized ye in the warm worked grains. White 
particles in the center are MC carbides. 



-77- 

I 

Fig. 6. TEM micrograph of the necklace region showing the 
large y' (a) on the grain boundaries and the fine y' 
inside the grains. 

Fig. 7. TEM'micrograph of both a warm worked grain (left) 
and the necklace region surrounding it (right). Note 
the dislocation substructure around the intermediate y' 
(b) in the warm worked grain. 



-78- 

0 
Cl 

0 PP (20 cpm) 

- a cp(lO/O) 0 

0 pc(O/l) 
\ 

opc(0/10) 

0 cc(l/l) 

0 cc(10/10) 

I I I I 

lo2 lo3 lo4 lo5 

CYCLES TO FAILURE Nf 

Fig. 8. Coffin-Manson plot for Rene' 95 at 650°C under 
continuous cycling and with strain holds. 
line represents th 

8% 

The straight 

tests at 20 cpm.C 
relationship for continuous cycling 
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A A 
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cl 

l s 

/ 

0 pp (20 cd 

0 A cp (l/O) 

a cp (10/O) 

8 pc(O/l) 

0 pc(O/lO) 

l cc(l/l) 

I 0 cc(10~10) 

MAXIMUM TENSILE STRESS CJ,,, (ksi) 

Fig. 9. The dependence of maximum tensile stress on 
plastic strain range for different cycle types. 
Note the shift in maximum tensile stress developed 
during hold time compared to continuous cycling 
(represented by the straight line).(82j 
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2011 

( b) 

Fig. 10. Typical crack initiation region fdr specimens 
tested at high strain ranges under continuous cycling. 
In (a) thcrc is a transgranular initiation followed by 
a mixed mode of propagation. In (b) crack origin is 
shown at higher magnification with faint striations and 
bi(. car-bides (arrows) visible on the fracture surface. 
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Fig. 11. Crack initiation region where the crack probably 
had initiated intergranularly and further propagated mainly 
by transgranular mode. Note that the striation like 
feature are quite brittle in nature. 

Fig. 12. SEM micrograph of a longitudinal section showing 
a crack which had initiated transgranularly. Note the 
crack changed direction upon travelling across a single 
warm worked grain or crossing the necklace regions. 
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Fig. 13. Typical facets present on the fracture surface 
in the later stage of crack propagation. 

Fig. 14. Typical crack initiation at a surface MC carbide 
(arrow) which had fallen off during testing. 



Fig. 15. Fracture surface of continuously cycled specimens with As=O.9#. Note the dual mode of 
cracking, transgranular in the large warm worked grains and intergranular through the necklace 
regions. Slip traces are revealed in the grain where crack initiated. Arrow indicates the 
initiation site. 
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b) 

Fig. 16. SEM micrograph showing cracking of MC carbides 
on the gage surface of specimens. In (a) two surface MC 
carbides had ruptured during testing while(b) shows 
further propagation into the matrix. The longitudinal 
marks are due to the finish machining operation. 
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Fig. 17. SEbl micrograph of longitudinal section showing 
fractured MC carbides in the interior of the specimen. 

Fig. 18. Internal crack occasionally observed in specimens 
tested at high strain ranges, probably initiated due to 
cracking of internal MC carbides. The crack on the lcrt 
is surface associated. 
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Fig. 19. SEM micrograph of gage surface showing slip 
offsets in the crack propagation region. 

Fig. 20. The edge of the fracture surface away from the 
crack origin parallel to the slip offsets on the gage 
surface. 
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r 1, tracct 217 1 

Fig. 21. Deformed microstructure of Rene' 95 in a single 
warm worked grain showing microtwins (trace T) and slip 
bands (trace S). 

Fig. 22. Planar slip in a necklace grain of Rene' 95. 



Fig. 23. Intergranular crack initiation 
and early propagation in specimens tested 
at Aet=1.4% under tensile hold (a), 
compressive hold (b) and balanced hold(c). 
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(b) 

Fig. 24. Mixed mode of cracking in specimens tested under 
hold times showing fracture features facets (a) and 
striation like feature (b) in the waim worked grains. 
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Fig. 25. Crack initiation in the necklace region for hold 
time tests. 

Fig. 26. A crack initiated transgranularly and propagated 
intergranularly before meeting a warm worked grain. 



Fig. 27. Dual mode of cracking in specimen tested under tensile hold with,Ac;0.9#. 
This is typical for hold time tests at low strain ranges. Arrow indicates initiation 
site. 
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Fig. 28. Dependence of life on maximum tensile stress for all cycle 
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Fig. 29. Microstructure of NARloy Z showing intermetallic 
compound Cu-10 Ag-22.5 Zr and annealing twins. 
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(a) 

Ag [rings] 

(b) 

Fig. 30. (a) TEM micrograph showing initial structure of 
NARloy Z with larger precipitates Ag and relatively small 
precipitates Cu20. (b) Diffraction pattern under (111). 
The former give rise to rings while the latter, 
superlattice spots. 

t I 
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0.1 
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10Z 103 10’ 
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Fig. 31. Coffin-Manson plot for NARloy Z at 538’C under continuous 
cycling and with strain holds. The straight line represents 
relationship for continuous cycling tests at 1.0 percent set -1’783) D 
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(b) 

Fig. 32. Typicaglfracture feature for specimens tested at 
1.0 percent set . (a) shows transition of cracking from 
intergranular to transgranular mode. (b) shows striations 
in the region of transgranular crack propagation. 
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Figz133. Gage surface of specimens tested at 1.0 percent 
set showing grain boundary decohesion. 

f 

J 

c b 1 

(a) 
Fig. 34. (a) Longitudinal section of specimens tested at 
1.0 percent set showing surface cracks ceased growing 
right after initiation. 
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(b) 

Fig. 34. (Continued) (b) shows a crack which had grown 
tuo or three grains in depth. (c) shows a crack grew 
like the main crack, transgranularly into the matrix. 
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Fig. 35. Internal damage in specimen tested at t=l.O% set-' 
and Act=2.6% in the form of wedge cracks (a) and cavities 

(b) l 
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Fig. 36. Typical intergranular cracking for specimens tested 
at 0.004 percent set . 

Fig. 37. Grain boundary cracking on thf gage surface of 
specimens tested at 0.004 percent set . 
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Fi 8. 38. Typical surface intfrgranular crack for specime 
te sted at 0.004 percent set . 

ns 

Fig. 39. Typical lfternal damage for specimens tested 
0.004 percent set . 

at 
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Fig. 40. Transition of cracking from intergranular to trans- 
granular mode in specimens tested under compressive hold. 

- 

Fig. 41. Severe preferential grain boundary oxidation in 
specimens tested under compressive hold. 
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Fig. 42. Occurrence of recrystallization in the gage 
section of specimen tested under compressive at Act= 0.9%. 

Fig. 43. Intergranular fracture on specimens tested under 
tensile hold. 
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Fig. 44. Internal cracks in specimen tested under tensile 
hold at AE~= 2.6%. 

Fig. 45. Linkage of surface and internal cracks in specimen 
tested under tensile hold at Act=0.9%. 
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Fig, 46. Coffin-Manson plot for NARloy Z under continuous cycling at 
medium strain rate, slow-fast and fast-slow cycling (re uisfj ented by 
open symbols). Data from Fig. 31 are superimposed also. 
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Fig. 47. TEM micrograph showing deformed microstructurf of 
NARloy Z tested under continuous at 0.004 percent set . 
(a) shows a grain with random distribution of dislocations 
and most of them-were pinned by Ag precipitates. In &I, 
in the same specimen subgrains had formed. 
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